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Tinnitus, a ringing in the ear or head without an external sound source, is a prevalent health problem. It
is often associated with a number of limbic-associated disorders such as anxiety, sleep disturbance, and
emotional distress. Thus, to investigate tinnitus, it is important to consider both auditory and non-
auditory brain structures. This paper summarizes the psychophysical, immunocytochemical and elec-
trophysiological evidence found in rats or hamsters with behavioral evidence of tinnitus. Behaviorally,
we tested for tinnitus using a conditioned suppression/avoidance paradigm, gap detection acoustic reflex
behavioral paradigm, and our newly developed conditioned licking suppression paradigm. Our new
tinnitus behavioral paradigm requires relatively short baseline training, examines frequency specification
of tinnitus perception, and achieves sensitive tinnitus testing at an individual level. To test for tinnitus-
related anxiety and cognitive impairment, we used the elevated plus maze and Morris water maze. Our
results showed that not all animals with tinnitus demonstrate anxiety and cognitive impairment.
Immunocytochemically, we found that animals with tinnitus manifested increased Fos-like immunore-
activity (FLI) in both auditory and non-auditory structures. The manner in which FLI appeared suggests
that lower brainstem structures may be involved in acute tinnitus whereas the midbrain and cortex are
involved in more chronic tinnitus. Meanwhile, animals with tinnitus also manifested increased FLI in
non-auditory brain structures that are involved in autonomic reactions, stress, arousal and attention.
Electrophysiologically, we found that rats with tinnitus developed increased spontaneous firing in the
auditory cortex (AC) and amygdala (AMG), as well as intra- and inter-AC and AMG neurosynchrony,
which demonstrate that tinnitus may be actively produced and maintained by the interactions between
the AC and AMG.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

2009). If left untreated, tinnitus may have debilitating conse-
quences and can impact daily life by causing anxiety, irritability,

Tinnitus is a prevalent health condition that affects 10—15% of
the adult population (Axelsson and Ringdahl, 1989) and 33% of the
elderly population (Nondahl et al., 2002, 2007). In addition, 3—4
million veterans suffer from tinnitus, with up to 1 million in the US
seeking clinical services (Cave et al.,, 2007; Elder and Cristian,

Abbreviations: AC, auditory cortex; AMG, amygdala; FLI, Fos-like
immunoreactivity
* Corresponding author. Department of Otolaryngology-Head and Neck Surgery,
5E-UHC, Wayne State University, School of Medicine, 4201 Saint Antoine, Detroit,
MI 48201, USA.
E-mail address: jinzhang@med.wayne.edu (J.S. Zhang).

http://dx.doi.org/10.1016/j.heares.2015.08.006
0378-5955/© 2015 Elsevier B.V. All rights reserved.

disturbed sleep patterns, and depression (Crocetti et al., 2009;
Hasson et al., 2011; Hebert and Lupien, 2007; Hesser et al., 2009;
Rossiter et al., 2006; Stevens et al., 2007). Economically, tinnitus
has become a top service-connected disability that affects military
personnel and veterans, leading to approximately $2 billion in
annual disability compensation in the US (VBA, 2013). Therefore,
there is an urgent need to find reliable therapies to treat and cure
this condition. However, due to limited understanding of the un-
derlying mechanisms of tinnitus, the development of effective
treatment strategies have been hindered. Over the last 15 years,
numerous animal and clinical studies have yielded a wealth of
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information towards the understanding of tinnitus.

Mechanistically, there is a consensus that tinnitus can be of
peripheral or central origin. This view is largely based on clinical
studies where the auditory nerve has been resected or a micro-
vascular decompression has been performed at the auditory nerve.
These studies demonstrated that roughly 50% of tinnitus patients
who undergo these resections continue to experience tinnitus, with
some patients experiencing tinnitus exacerbation (House and
Brackman, 1981; Moller et al., 1993). For tinnitus of central origin,
many lines of evidence indicate that tinnitus arises from central
maladaptive plasticity. This plasticity is triggered by peripheral
damage, such as through noise exposures (including high-pressure
blast shockwaves), salicylate, quinine and cisplatin, which can
result in deafferentation and lead to compensatory enhancement of
neural activity in the central auditory system (Kaltenbach, 2011;
Mao et al., 2012; Roberts et al., 2010). Since noise exposure is the
most common inducer of tinnitus, predominant efforts have been
directed at investigating noise trauma-induced tinnitus and eluci-
dating the underlying mechanisms. Based on published informa-
tion, noise trauma may cause hyperactivity (increased spontaneous
firing), increased bursting events, hypersynchrony (increased
neural synchrony), and tonotopic map reorganization along the
auditory pathways. The studied auditory brain structures include
the dorsal cochlear nucleus, ventral cochlear nucleus (Kraus et al.,
2011; Vogler et al., 2011), inferior colliculus and auditory cortex
(AC) (Bauer et al., 2008; Eggermont and Roberts, 2004; Kaltenbach,
2011; Mulders and Robertson, 2011; Zhang et al., 2006).

As described above, tinnitus is frequently accompanied by anxi-
ety, irritability, disturbed sleep patterns, and depression, illustrating
the involvement of limbic-associated dysfunctions in the etiology of
tinnitus. Thus, in addition to the contribution of neural activity
changes in auditory structures, neural activity changes in limbic
structures may play an important role in tinnitus. This is not
surprising given the direct and indirect connections between the
central auditory system and limbic structures (Kraus and Canlon,
2012), as well as the fact that limbic-associated functioning,
including cognition and emotion, are frequently compromised in
tinnitus sufferers (Hallam et al., 2004; Hebert et al., 2012a; Lewis,
2002; Oishi et al., 2010). Some regard the limbic system as obliga-
tory machinery necessary for tinnitus perception, whereas others
consider it an auxiliary neural substrate that is involved in the
cognitive and emotional impairments in tinnitus (Hallam et al.,
2004; Hallberg and Erlandsson, 1993; Lewis, 2002; Oishi et al.,
2010). For example, Jastreboff's model proposes that tinnitus origi-
nates in the auditory pathway and involves the limbic system where
memories of the phantom sound encoded by the amygdala (AMG)
are linked to fear and negative emotions stored in the hippocampus.
Nevertheless, it is unclear how the AMG directly contributes to the
etiology of tinnitus, how its interactions with auditory structures
contribute to the development of tinnitus, and whether other non-
auditory brain structures are involved in the etiology of tinnitus.

This paper reviews recent findings from the projects supported
by the Tinnitus Research Consortium by focusing on psychophysical
correlates of tinnitus, auditory and non-auditory neural correlates
of tinnitus, as well as the neurophysiological interactions between
auditory and non-auditory centers. Psychophysically, we have, over
the years, adopted conditioned suppression/avoidance (Heffner
and Harrington, 2002) and unconditioned (gap detection acoustic
startle reflex paradigm, Turner et al., 2006) paradigms. Our lab has
recently developed a conditioned-licking suppression paradigm
that requires relatively short baseline training, possesses tinnitus
frequency-specific and loudness-sensitive testing at the individual
level, as well as versatility for testing tinnitus that results from
different inducers (Pace et al., 2015). In addition to testing for
tinnitus, we also tested animals' limbic dysfunctions by measuring

anxiety and cognitive impairment. Immunocytochemically, we
measured Fos-like immunoreactivity (FLI) in both auditory and
non-auditory brain structures of rats with behavioral evidence of
tinnitus. Electrophysiologically, we measured neural activity
changes in the AC and AMG of rats with noise-induced tinnitus.

2. Psychophysical correlates of tinnitus and its associated
limbic dysfunctions

2.1. Testing behavioral evidence of tinnitus

Although tinnitus can be induced by many factors, it may only
manifest in certain individuals or time points (Cave et al., 2007;
Griest and Bishop, 1998). Consequently, numerous behavioral par-
adigms have been established to determine the perception and
characteristics of tinnitus in animals (Bauer and Brozoski, 2001;
Berger et al., 2013; Guitton and Dudai, 2007; Heffner, 2011;
Heffner and Harrington, 2002; Jastreboff et al., 1988; Kizawa
et al., 2010; Lobarinas et al., 2004; Longenecker and Galazyuk,
2012; Luo et al., 2014; Norman et al., 2012; Pace and Zhang, 2013;
Ruttiger et al.,, 2003; Sederholm and Swedberg, 2013; Stolzberg
et al., 2013; Turner et al.,, 2006; Yang et al., 2011; Zheng et al,,
2011c). Over the past 15 years, our lab has adopted several para-
digms, including conditioned suppression/avoidance (Heffner and
Harrington, 2002; Zhang et al., 2003b), gap-detection (Luo et al.,
2012; Pace and Zhang, 2013; Zhang et al., 2011), and a recently
developed conditioned licking suppression paradigm (Pace et al.,
2015).

For the conditioned suppression/avoidance paradigm, water-
deprived hamsters were trained to drink water from a spout dur-
ing the presentation of broadband noise and/or tones (Heffner and
Harrington, 2002). Attempts to drink water during silence were
suppressed by punishment with a mild electrical shock. Following
intense tone exposure, shocks were removed and hamsters that
spent a lower average percentage of time drinking during sound
trials and not drinking during silent trials were considered tinnitus
positive. Hamsters were tested for at least 5—10 days following tone
exposure. Key advantages for this early behavioral model were that
sufficient data could be collected in a single testing session, and
that individual animals could be assessed for tinnitus. The draw-
backs, however, were that animals required 32—35 testing sessions
to reach baseline criteria and they could not be tested for long-
lasting tinnitus.

As an alternative to operant conditioning models, gap-detection
has evolved over the past decade into a widely used tool for tinnitus
assessment in rodents. The strengths of the gap-detection test are
that food/water-deprivation and shock punishments can be avoi-
ded, enabling shorter training periods. Additionally, the frequency
range of tinnitus can be determined. In our studies using gap-
detection, we have found evidence of acute and lasting noise-
type and tonal-type tinnitus following noise exposure (Luo et al.,
2012; Pace and Zhang, 2013; Zhang et al., 2011). We were also
able to identify tinnitus manifestation and frequencies in individual
rats, as detailed in our recent report (Pace and Zhang, 2013) (Fig. 1).
In addition, we have demonstrated suppression of behavioral evi-
dence of tinnitus using electrical stimulation of the auditory cortex
(Zhang et al., 2011) and dorsal cochlear nucleus (Luo et al., 2012).
While these findings are collectively in line with the literature
(Bauer et al., 2008; Brozoski et al., 2002; De Ridder et al., 2006a;
Seidman et al., 2008; Zhang and Kaltenbach, 1998), it is impor-
tant that multiple behavioral models of tinnitus are used to validate
results, especially since tinnitus may not always impair certain
measurements like gap-detection (Campolo et al., 2013).

Recently, we have developed a tinnitus paradigm that utilizes
conditioned licking suppression (Pace et al., 2015). The benefits of
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Fig. 1. Gap and startle only ratios from a representative tinnitus*, tinnitus(’, and control rat. In the tinnitus*) rat (A), 5-6 weeks post-exposure GAP ratios were significantly
higher than pre-exposure ratios but not significantly lower than startle only ratios, indicating tinnitus at 6—-8 and 26—28 kHz. Neither the tinnitus(~) (B) nor the control rat (C)
exhibited tinnitus. Error bars represent the standard error of the mean (SEM). * indicates significance P < 0.05. Adapted from Pace and Zhang (2013).

this paradigm are that rats can reach stable baseline performance in
only 10 to 16 testing sessions, the frequency range of tinnitus can be
determined, and tinnitus can be assessed in individual rats. To
accomplish this, water-deprived rats were trained to lick a hori-
zontal spout during narrowband sound trials in order to receive
water rewards. They were punished with a mild, 50% reinforced
foot shock (0.25—0.75 mA) when they licked the spout during silent
trials, and thus learned to minimize silent trial licks. Consequently,
rats were considered tinnitus positive if they increased silent trial
licking relative to baseline performance. Increased silent trial licks
following specific frequency bands of sound trials would also
indicate the tinnitus frequency range. After noise-exposure
(8—16 kHz, 105—110 dB, 2hr), we found that about 50% rats
exhibited lasting tinnitus through 7 weeks post-exposure, as sug-
gested by an increased number of silent trial licks (Fig. 2A—B).
Importantly, neither tinnitus positive nor tinnitus negative rats
showed permanent hearing loss or changes in sound trial licks
(Fig. 2C-D), indicating that overall sound sensitivity and

responsivity remained consistent. Thus, our paradigm provides a
relatively fast and robust method for screening tinnitus behavior in
rats, which is vital for mechanistic studies as well as therapeutic
drug and prostheses development.

2.2. Testing of limbic dysfunctions

Individuals with tinnitus can experience difficulties including
problems concentrating, sleeping, irritability, increased risk for
mood and anxiety disorders, and even suicide (Hebert et al., 2012b;
Lewis, 2002; Lewis et al., 1994; Oishi et al., 2010). These dysfunc-
tions can be related to the limbic system, and indeed, tinnitus pa-
tients have often shown altered activity and structure in limbic
regions such as the amygdala and hippocampus (Landgrebe et al.,
2009; Lockwood et al., 1998; Schmidt et al, 2013). Given the
complexity and variability between tinnitus perception and limbic-
associated functioning (Andersson et al., 2009; Crocetti et al., 2009;
Hesser et al., 2009; Oishi et al., 2010; Rossiter et al., 2006; Stevens

Fig. 2. Operant conditioning behavioral paradigm for testing noise-induced tinnitus. At 7 weeks following noise exposure, tinnitus'*) rats displayed a significant increase in silent
trial spout licking across all-frequency bands (A), suggesting tinnitus. Tinnitus{ ") rats, on the other hand, displayed no changes in post-exposure silent trial licking (B). Neither group
exhibited changes in sound trial licking (C—D), indicating that overall activity levels remained consistent and were unlikely to be affected by changes in sound sensitivity, like
hearing loss. Error bars represent standard error of the mean. * indicates significant increase.



10 J. Zhang et al. / Hearing Research 334 (2016) 7—19

et al., 2007), animal models play a critical role in elucidating their
interrelationships. The main challenge is finding methods to
identify cognitive-emotional dysfunction in animals and properly
extrapolating that dysfunction to humans.

After rats underwent noise exposure, we have assessed their
behavior on the elevated plus maze and Morris water maze,
respectively, to determine whether tinnitus positive rats displayed
greater impairment (Pace and Zhang, 2013). For the plus maze test,
animals with high anxiety levels commit less entries and time in
the exposed, open arms of the maze and instead gravitate towards
the safer, enclosed arms. Following tone exposure, we found no
significant increase in anxiety for tinnitus positive or negative
groups as a whole (Pace and Zhang, 2013). However, when
assessing individual rats, we observed that the majority of rats with
the highest anxiety levels also had tinnitus. This matches clinical
studies where only certain tinnitus subjects have significant anxi-
ety (Crocetti et al., 2009; Hesser et al., 2009; Oishi et al., 2010) (Belli
et al., 2008; Zoger et al., 2001, 2006) An earlier animal study also
found no significant increase in anxiety for noise-exposed tinnitus
positive rats (Zheng et al., 2011b) although rats were not individ-
ually assessed for anxiety or tinnitus. Further assessment of these
and additional behaviors such as grooming microstructure, sucrose
consumption, weight, and other measurements may help clarify
tinnitus-related emotional distress in animals.

In the Morris water maze test, animals swim through a water
tank and use spatial cues to locate a hidden, underwater platform.
Animals that take longer to find the platform and spend less time in
the platform area are considered to have impaired spatial learning
and memory. After we subjected rats to noise exposure, however,
we found no spatial cognitive deficits in tinnitus positive or nega-
tive rats (Pace and Zhang, 2013). These results were supported by
previous studies where no spatial cognitive impairment was found
in rats with noise-induced tinnitus (Zheng et al, 2011a).
Conversely, rats with noise-induced tinnitus have shown altered
impulse control and social interaction (Zheng et al., 2011b, 2011c).
This appears to reflect the clinical situation, where only certain
tests have found cognitive dysfunction in a portion of tinnitus
subjects (Andersson et al., 2009; Hallam et al., 2004; Rossiter et al.,
2006; Stevens et al., 2007) Like assessments for tinnitus-related
emotional distress, more work is clearly required to elucidate
limbic-associated cognitive functioning. Given the wide range of
dysfunction, research on both fronts is urgently needed.

3. Neural correlates of noise-induced tinnitus in auditory
structures

3.1. Increased FLI in auditory brain structures of hamsters with
tinnitus

C-fos immunocytochemistry is used to map functional activity
changes along the auditory pathways with cellular resolution. This
method is based on the fact that the immediate early proto-
oncogene c-fos responds to a variety of external stimuli and
serves as functional marker (Alagramam et al., 2014; Lu et al., 2014;
Ogata et al., 2015). The usage of this method was prompted by
human studies using PET and functional MRI showing that some
types of tinnitus are associated with increased metabolic activity at
both cortical and subcortical levels of the auditory system
(Lockwood et al., 1998; Melcher et al., 2009; Boyen et al., 2014; Gu
et al,, 2010). In addition, ['4C]-2-deoxyglucose autoradiography (2-
DG) was also used to detect the neural correlates of tinnitus (Paul
et al, 2009; Schecklmann et al, 2013; Zhang et al, 2003a).
Compared to single- or multi-unit electrophysiology, PET, fMRI, 2-
DG and c-fos immunocytochemistry allow measurement of neural
activity or information to reveal neural activity changes in multiple

brain regions. Only the latter (i.e., c-fos immunocytochemistry)
achieves cellular resolution. Experiments in gerbils have demon-
strated increased c-fos expression in the AC and numerous non-
auditory brain structures after treatment with sodium salicylate,
which was assumed to induce tinnitus (Wallhauser-Franke et al.,
2003). The increases in c-fos expression have also been observed
in some auditory and non-auditory areas of animals within a few
hours following exposure to impulse noise (Wallhduser-Franke
et al., 2003). However, the long-term effects of sound exposure
on Fos-like immunoreactivity (FLI) in the brain and the relationship
of these effects with tinnitus have yet to be reported. Furthermore,
studies using the above methods have not been conducted in ani-
mal subjects that had been exposed to intense sound and tested
behaviorally for tinnitus.

Prior to c-fos immunocytochemistry, we first evaluated behav-
ioral evidence of noise-induced tinnitus as previously reported
(Heffner and Harrington, 2002) and described above (see Section
2.1). The performance score was calculated as the mean percentage
time that a hamster was in contact with a waterspout during sound
trials and was not in contact with a waterspout during silence. Thus
hamsters with tinnitus would expectedly score lower than ham-
sters without tinnitus, since hamsters would hear tinnitus during
silent trials and be less likely stop drinking on trials (Heffner and
Harrington, 2002). Following baseline testing, the hamster was
exposed to a 10 kHz tone at 125—129 dB SPL for 4 h. Post-exposure
behavioral testing was performed to examine the presence of
tinnitus. Our results showed that the scores of exposed hamsters
averaged 62.29 and ranged from 54.31 to 69.18, significantly lower
than the unexposed group, which averaged 72.63 and ranged from
60.90 to 7714 (Zhang et al., 2003). The lower mean scores of
exposed hamsters suggests that these hamsters tended to maintain
waterspout contact during silent trials as though they heard a
sound, even though no external sound was present, this indicates
tinnitus. Following tinnitus verification, the hamsters were eutha-
nized with a lethal dose of anesthetic. Their brains were removed
and processed immunocytochemically (Zhang et al.,, 2003). The
density of FLI was bilaterally quantified on both auditory and non-
auditory brain structures (Zhang et al., 2003).

The results showed that, compared to naive controls, hamsters
that demonstrated evidence of tinnitus manifested significant in-
creases of FLI in the contralateral lateral lemniscus, and bilateral
central nucleus of the inferior colliculus and AC (Figs. 3 and 4).
Interestingly, we did not observe increased FLI in the cochlear nu-
cleus, lateral superior olive, nucleus of trapezoid body, and ventral
subdivision of the medial geniculate body (Zhang et al., 2003). The
increases in the auditory structures may result from increased
spontaneous firing, as increased FLI in neural systems represents
increased major activity (Morgan and Curran, 1991). Indeed,
tinnitus inducers such as noise exposure are known to cause
increased spontaneous firing in the inferior colliculus (Bauer et al.,
2008) and AC (Llano et al., 2012; Norena and Eggermont, 2003). The
main discrepancy is the reduced FLI activity in the cochlear nucleus
even though it has been reported that noise exposure causes
increased spontaneous firing in both the dorsal cochlear nucleus
(Kaltenbach, 2011; Roberts et al., 2010) and ventral cochlear nu-
cleus (Kraus et al., 2011; Vogler et al., 2011). This calls into question
the activity-dependent mechanism of increased FLI in other audi-
tory structures. One possible explanation of this result may be that
noise-induced increased spontaneous firing in the cochlear nucleus
was less potent compared to the increased neural activity in other
auditory brain structures. Additionally, acoustic trauma is known to
be a major trigger of plastic alterations in the central auditory
system, and the capacity for some forms of plasticity is greater at
midbrain and cortical levels than at lower levels of the system
(Zhang et al, 2003). For example, hearing loss-induced
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Fig. 3. Photomicrographs showing FLI in the CIC and AC of both unexposed (A, B) and exposed (C, D) animals. The magnified details of Fos labeling in the CIC and Au are shown in
the insets for both groups. Au — primary auditory cortex; CIC — central nucleus of the inferior colliculus; PRh — perirhinal cortex. Adapted from Zhang et al. (2003b).

Fig. 4. Quantified FLI in auditory structures of intact, unexposed and exposed animals.
(I) — ipsilateral; (C) — contralateral side, with respect to the exposed left ears. Com-
parison of FLI between exposed and unexposed animals for each structure was made
on the same side of the brain. DLL, VLL — dorsal and ventral nucleus of lateral
lemniscus; CIC — central nucleus of the inferior colliculus; dMGB, mMGB, vMGB —
dorsal, medial and ventral subdivision of medial geniculate body; Au — primary
auditory cortex. Value p < 0.05(*). Adapted from Zhang et al. (2003b).

reorganizations of the tonotopic map have been found at the
midbrain and cortical levels (Robertson and Irvine 1989; Snyder
et al., 2000), but the cochlear nucleus appears to show little or no
capacity for this type of plasticity (Willott et al., 1991; Kaltenbach
et al., 1992). Furthermore, it is possible that lower brainstem
structures such as the dorsal cochlear nucleus are involved in acute

tinnitus whereas the midbrain and cortex are involved in more
chronic tinnitus.

3.2. Increased spontaneous firing in the AC of rats with tinnitus

As described above, increased spontaneous firing has been
demonstrated in a number of auditory structures including the
dorsal and ventral cochlear nucleus, inferior colliculus, and AC
following administration of noise exposure, salicylate or quinine
(Britvina and Eggermont, 2008; Engineer et al.,, 2011; Munguia
et al., 2013; Norena and Eggermont, 2006).

Simultaneous electrophysiological recordings were conducted
with microelectrode arrays chronically implanted in multiple
structures in the AC and AMG of three rat groups, The three rat
groups consisted of a Tinnitus(+) group in which rats developed
tinnitus after noise exposure, a Tinnitus(—) group in which rats did
not develop tinnitus, and a Control group in which rats were not
noise-exposed and did not develop tinnitus. Aseptic surgery was
performed to implant electrode arrays in the right AC and AMG for
chronic recordings, targeting the primary AC and the basolateral
region of the amygdala, respectively. Recordings were conducted
on a weekly basis ~10 days after recovery from surgery. Sponta-
neous and nonspontaneous (i.e. evoked) activity was recorded
under isofluorane anesthesia. For each recording session, sponta-
neous single- and multi-unit activity was recorded for 10 min at 30-
min intervals before and after tone exposure. Spontaneous firing
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rate was then calculated by dividing the activity by time used for
recording. Nonspontaneous activity was recorded during frequency
tuning curves in the AC were acquired before and after tone
exposure to determine tonotopic representations of spontaneous
and stimulus-driven activity and plastic reorganization. Along with
histology results, all recording electrodes were identified for
tonotopic representation during data analysis.

As shown in Fig. 5, there was a significant increase in sponta-
neous firing rate in the AC of Tinnitus(+) rats compared to both
controls and Tinnitus(—) rats. Such increased spontaneous firing
occurred at both 2 and 6 weeks after noise exposure. At the same
time, we did not observe any significant difference in spontaneous
firing between controls and Tinnitus(—) rats. This indicates that the
hyperactivity found in the AC of Tinnitus(+) rats directly represents
the neural substrate underlying tinnitus. The results suggested that
the tinnitus percepts are of cortical origin.

3.3. Increased spontaneous neurosynchrony in the AC of rats with
tinnitus

Neural synchrony reflects the degree of firing of different neural
components in a time domain. Eggermont (Eggermont and Tass,
2015) recently divided neural synchrony into three types,
including 1) microsynchrony, referring to nearly simultaneous
firing of individual neurons; 2) mesosynchrony, referring to syn-
chronized membrane-potential changes in local neural groups as
reflected in the local field potentials; and 3) macrosynchrony,
referring to oscillatory brain waves in the EEG signals. In this paper,
we include microsynchrony data recorded from the AC and AMG to
address the interactions between the AC and AMG. Neuro-
synchrony was calculated based on the peak value per 5 ms for each
frequency band and location. We grouped the electrodes by fre-
quency bands based on the characteristic frequencies recorded
from tuning curves. The matrix of pair wise peak correlation values
from within- and in-between the AC and AMG was subjected to a
hierarchical clustering procedure and analyzed by a custom made
program in MatLab and NeuroExplorer. The peak cross-correlation
coefficients (C) were obtained from the equation of C = Syy/+/5xSy,
where Sy and Sy are the number of spikes in channel x and channel
y. The grouped neurosynchrony data at three frequency loci were
then analyzed for significance using repeated measures ANOVA
followed by post-hoc t-test to compare for differences between the
noise trauma and control rats, or the tinnitus(+) and tinnitus(—)
rats after noise exposure. Neurosynchronization index values were
analyzed using IBM SPSS Statistics version 21.0. One-way ANOVA
was performed with post hoc Bonderroni multiple comparisons to

Fig. 5. A. Changes in spontaneous firing rates (SFRs) in the auditory cortex (AC) over
time in rats under anesthesia. The neural hyperactivity became robust in the tinnitus*)
group compared to tinnitus~) and control groups.

compare the synchrony index values among the auditory struc-
tures. A p < 0.05 was considered statistically significant for the data
analyses.

Our data showed that neural synchrony, as represented by the
correlogram ratio, was increased in the AC of both tinnitus(+) and
tinnitus(—) rats at 2 weeks after noise trauma (Fig. 6). Such
increased neurosynchrony persisted in the AC of tinnitus(+) rats at
six weeks after noise trauma. However, the synchrony in the AC of
tinnitus(—) rats returned to control-level values. Our data showing
the general increase of synchrony in the AC after noise exposure is
consistent with the earlier studies (Engineer et al., 2011; Komiya
and Eggermont, 2000). For example, increased inter-neuronal
synchrony within the reorganized part of the cortex was found at
7—16 weeks after exposure in cats (Komiya and Eggermont, 2000).
While those cats were diagnosed with hearing loss, it was unknown
whether they perceived tinnitus. Eggermont and his research team
also reported, however, that an increased synchrony in the AC can
occur immediately following noise exposure or quinine treatment
(Norena and Eggermont, 2003, 2005; Ochi and Eggermont, 1997). In
addition, and similar to our study, multiunit recording was con-
ducted in the AC of rats with noise-induced tinnitus behavior,
which demonstrated increased synchrony (Engineer et al., 2011).
Moreover, both groups have found that synchronized activity is
related to cortical reorganization or frequency tuning in the AC
after noise exposure. Taken together, these studies and ours suggest
that correlation between cortical reorganization and inter-neural
synchrony may be related to tinnitus induced by acoustic trauma.
Thus, both enhanced synchronization and frequency tuning
changes in the AC may be directly responsible for tinnitus (Bauer
et al., 2008; Eggermont and Roberts, 2004). Future study can be
focused on the pattern of frequency tuning or neuroplastic
response in the AC of noise-induced tinnitus(+) rats.

4. Neural correlates of noise-induced tinnitus in non-
auditory structures

4.1. Increased FLI in non-auditory brain structures of animals with
tinnitus

C-fos immunocytochemistry studies showed that hamsters with
noise-induced tinnitus manifested significant increases of FLI in a
number of non-auditory brain structures, including the bilateral
locus coeruleus, lateral parabrachial nucleus, lateral hypothalamic
area, posterior hypothalamic area, paraventricular thalamic nu-
cleus, lateral supramammillary nucleus, ventral premammillary
nucleus, central amygdaloid nucleus, lateral amygdaloid nucleus,
basolateral amygdaloid nucleus, and contralateral arcuate nucleus
(Figs. 7 and 8) (Zhang et al., 2003b). When comparing the ipsilateral
and contralateral sides of exposed hamsters, no appreciable dif-
ferences in FLI were observed for the majority of structures. Ex-
ceptions were that FLI was higher in the contralateral lateral
lemniscus, central nucleus of the inferior colliculus, ipsilateral
central amygdaloid nucleus, and contralateral lateral supra-
mammillary nucleus than the opposite side. The increased FLI ac-
tivity in these non-auditory structures suggests their involvement
in the noise-induced tinnitus (Zhang et al., 2003b). Mechanistically,
the locus coeruleus, a noradrenergic nucleus, is known to mediate
arousal/sleep (Del Cid-Pellitero and Jones, 2012; Koh et al., 2015),
stress (Koh et al., 2015), and responses to noxious stimulation
(George et al., 2013). The lateral parabrachial nucleus is a major
relay center of visceral sensory information to the forebrain. The
locus coeruleus, and medullary autonomic regulatory centers, and
its neurons are activated by cardiovascular stimuli (Wang et al.,
2014). The increased FLI activity in the locus coeruleus and lateral
parabrachial nucleus suggests that noise-induced tinnitus may
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Fig. 6. A—C. Neurosynchrony as revealed by correlogram rate matrix in the AC of the tinnitus* group. The matrix provides the visualization and evaluation of neurosynchrony of
multi unit recording from different channels. The resultant grid displays the reference channel (y-axis) vs. target channel (x-axis), with the z-axis color proportional to the degree of
correlation. The rate of correlation increased significantly after noise trauma. D. Changes in the normalized correlogram rates in the AMG of anesthetized rats. The correlogram ratio
of the tinnitus™ group increased after noise trauma compared to the tinnitus~ and control groups.

Fig. 7. Photomicrographs showing FLI in non-auditory structures of unexposed (A) and exposed (B) animals. The magnified details of Fos labeling in the SuML are shown in the
insets for both groups. Au — primary auditory cortex; MRe — mammillary recess of 3rd ventricle; mm — mammillary peduncle. Adapted from Zhang et al. (2003b).

have also increased stress in affected hamsters. The increased FLI
activity in the lateral hypothalamic area, posterior hypothalamic
area, paraventricular thalamic nucleus, lateral supramammillary
nucleus, and ventral premammillary nucleus clearly suggested the
involvement of the hypothalamus in the autonomic responses to
tinnitus manifestation. This may be because the hypothalamus in-
tegrates neuroendocrine, autonomic, and behavioral responses to
stress (Bondarenko et al., 2015; Lkhagvasuren et al., 2014; Zheng
et al., 2014). Furthermore, the increased FLI activity in the amyg-
dala (AMG) indicates that the noise-induced tinnitus had a signif-
icant emotional component. Indeed, the AMG is an emotional
gating center and is directly involved in fear-conditioning, memory
and the processing of emotional signals (Janak and Tye, 2015; Rolls,
2015). Consistent with the previous notions (Wallhausser-Franke,
1997), intense noise exposure not only causes tinnitus, as indi-
cated by behavioral testing, but is also likely to impact hamsters’
arousal, attention and fear-conditioning-related emotion. The re-
sults also mirror previous clinical studies in that limbic structures
are often activated during tinnitus perception (Carpenter-

Thompson et al., 2014). Finally, our study showed that stimula-
tion with moderate-level and high-frequency tones also increased
FLI in non-auditory structures. This implicates the involvement of
auditory attention, especially sharp and annoying perceptions to
high-frequency tones (Zwicker and Fastl, 1990). However, since the
current sound exposure induced ABR threshold shifts, the hearing
loss-related effects on FLI activity remain to be differentiated from
tinnitus-specific effects.

4.2. Increased spontaneous firing in the AMG of animals with
tinnitus

Among the above autonomic and limbic structures that showed
FLI changes in animals with behavioral evidence of tinnitus, the
AMG is thought to be a pivotal structure linking tinnitus to stress,
emotion, anxiety, and memory (Cacace, 2004; De Ridder et al.,
2006b; Hui et al., 2006). It is connected with auditory structures
(Kraus and Canlon, 2012), such as the AC, to mediate auditory fear
conditioning (Maren et al., 2001), learning and memory (Poremba
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Fig. 8. Quantified FLI in non-auditory structures of intact, unexposed and exposed
animals. (I) — ipsilateral; (C) — contralateral side, with respect to the exposed left ears.
Comparison of FLI between exposed and unexposed animals for each structure was
made on the same side of the brain. LC — locus coeruleus; LPBN — lateral parabrachial
nucleus; LH — lateral hypothalamic area; PH — posterior hypothalamic area; ARC —
arcuate hypothalamic nucleus; PVN — paraventricular thalamic nucleus; SuML —
lateral supramammillary nucleus; PMV — ventral premammillary nucleus; CeA —
central amygdaloid nucleus; LA — lateral amygdaloid nucleus; BLA — basolateral
amygdaloid nucleus; Value p < 0.05(*), p < 0.01(**) and p < 0.001 (***). Adapted from
Zhang et al. (2003b).

and Gabriel, 1997; Roozendaal et al., 2009), and emotional signifi-
cance of sounds (Ledoux et al., 1990; Wu et al., 2007). The AMG is
also involved in body homeostasis (Aggleton, 1993) and integrates
inflammation-derived information to coordinate behavioral and
autonomic responses, whereas changes in AMG activity are
temporally related to an increase in anxiety-like behavior (Engler
et al,, 2011). Additionally, the AMG responds to environmental
disturbances; for example, it is involved in the emotional pro-
cessing of anxiety (Wu et al., 2007) and memory (Roozendaal et al.,
2009), the orchestration of body homeostasis (Aggleton, 1993),
sensorimotor gating (Decker et al., 1995), and in mediating post-
traumatic stress disorder (White et al., 2015). Taken together, it is
highly likely that the AMG is involved in noise-induced tinnitus.
To demonstrate the neurophysiological involvement of the AMG
in tinnitus, we chronically implanted multichannel electrode arrays
in the basolateral nucleus of the AMG and performed electro-
physiological recordings in rats with noise-induced tinnitus. As
described previously, rats were behaviorally tested for tinnitus
using the gap detection acoustic startle reflex paradigm before and
after an intense tone exposure (10 kHz, 105 dB SPL, 3 h duration).
The recording was conducted at different time points to monitor
the progression of tinnitus-related neural activity under anesthesia.
Our results showed that spontaneous firing rate (SFR) in the AMG
was significantly higher in rats with noise-induced tinnitus at 6
weeks post-exposure, compared to rats that had been exposed to
the same noise but did not develop tinnitus and naive controls
(Fig. 9). In addition, the neurosynchrony in the AMG changed
incrementally over time (Fig. 9). Along the same time, Chen and
colleagues reported that, following administration with salicylate,
neuronal activity in the rat AMG was selectively enhanced in high-
frequency regions that match the pitch of salicylate-induced
tinnitus (Chen et al., 2012). This is related to findings by Bordi
and Le Doux, which indicated that certain amygdala neurons are
turned to sound stimulation (Bordi and LeDoux, 1992). Mechanis-
tically, the induced increased spontaneous firing rate in the AMG of
rats may result from reduced GABAergic input from the inter-
inhibitory neurons onto the principal neurons in the basolateral
nucleus of the AMG. Such reduced GABAergic input from the inter-
inhibitory neurons might be caused by both excitatory AMPA and
NMDA input from both the medial geniculate body and AC (Doyere
et al., 2003), which may have been induced by intense noise
exposure for tinnitus induction. Thus, it is of importance and in-
terest to know whether the noise-induced AMG activation, which is

Fig. 9. A. Changes in spontaneous firing rates (SFRs) in the amygdala (AMG) over time
in rats under anesthesia. The neural hyperactivity became robust in the tinnitus‘*)
group compared to tinnitus~) and control groups. The spontaneous firing rate of the
tinnitus-negative group increased temporarily then returned to normal level.

associated with tinnitus, is caused by altered balance between the
mediate geniculate body and AC afferents to the AMG.

4.3. Increased spontaneous neurosynchrony in the AMG of rats with
tinnitus

As described in Section 3.3, microsynchrony data were obtained
and calculated in the AMG by examining correlograms to assess
how AMG neurons' spontaneous firing was correlated. We found
greater neurosynchrony in tinnitus(+) rats than in tinnitus(—) and
naive control rats (Fig. 10D). Such increased neurosynchrony
furthered over 2 and 6 weeks, as seen in correlogram plots (see
more reddish distributions of synchrony data in panels B and C
versus panel A of Fig. 10 and the quantified data in Fig. 10D). In
addition, there was no significant difference in the neurosynchrony
between the tinnitus(—) and control groups. Such results indicate
that the enhanced neurosychrony in the AMG represents neural
signals underlying the behavioral evidence of tinnitus.

Based on the coordinates from the rat brain atlas and histolog-
ical verification, the electrode arrays were implanted in the baso-
lateral nucleus of the AMG. The basolateral nucleus of the AMG
consists of both principal and GABAergic inter-inhibitory neurons.
As described above, if the input from the inter-inhibitory neurons is
reduced by excessive excitatory input from both the medial
geniculate body and AC (Doyere et al., 2003), intuitively the
increased neurosynchrony in the AMG possibly represent syn-
chronous firing between the principal neurons in the basolateral
nucleus of the AMG. Such enhanced neurosynchrony in the AMG
suggests that the limbic involvement of tinnitus is closely related to
active interactions between the principal neurons in the AMG.

5. Interactive neural correlates of noise-induced tinnitus in
auditory and non-auditory structures

The amygdala (AMG) is one important limbic structure that has
been thought to be linked to bothersome tinnitus (Carpenter-
Thompson et al., 2014; Chen et al., 2012; Jastreboff, 2004;
Shulman et al., 2009; Wallhausser-Franke et al., 2006; Zhang
et al., 2008, 2003b) through its role in emotional processing of
anxiety, memory (Chavez et al., 2009; Sigurdsson et al., 2007) and
sensorimotor gating (Decker et al.,, 1995). Anatomically, the AMG
sends direct projections to many brain regions (Price, 2003), among
which it forms circuits with auditory structures, such as the AC, to
mediate auditory fear conditioning (Maren et al., 2001), learning
and memory (Poremba and Gabriel, 1997), and to initiate
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Fig. 10. A—C. Neurosynchrony as revealed by correlogram rate matrix in the AMG of the tinnitus*) group. The matrix provides the visualization and evaluation of neurosynchrony of
multi unit recording from different channels. The resultant grid displays the reference channel (y-axis) vs. target channel (x-axis), with the z-axis color proportional to the degree of
correlation. The rate of correlation increased significantly after noise trauma. D. Changes in the normalized correlogram rates in the AMG of anesthetized rats. The correlogram ratio
of the tinnitus* group increased significantly after noise trauma compared to the tinnitus'~) and control groups. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

processing of emotionally significant stimuli (Ledoux et al., 1990).
The auditory thalamus and AC project to the AMG (Pan et al., 2009;
Winer, 2006). This linkage may contribute to establishment of
conditioned reactions to fear, involving a cascade of reactions
related to the AMG (Huang et al., 2005; Poremba and Gabriel, 1997;
Sah et al., 2003). The output of the AMG affects information pro-
cessing and plasticity in the AC (Duvel et al, 2001) which is
mediated by direct amygdaloauditory cortical projections (Duvel
et al, 2001) and indirect projections through the cholinergic
basal forebrain or hippocampal formation (Pitkanen et al., 2000).

To determine whether AC-AMG temporal coupling is involved in
the etiology of noise-induced tinnitus, we performed simultaneous
electrophysiological recordings of single- and multi-unit activity in
both the AC and AMG. As described in Section 3.3, microsynchrony
was calculated based on the peak value per 5 ms for each pair of
recording sites from both the AC and AMG. Fig. 11 showed that the
correlogram ratio values of the tinnitus positive group significantly
increased compared to tinnitus negative and control groups.
Interestingly such increase did not manifest in a uniform pattern.
Before noise exposure to induce tinnitus, a moderate level of syn-
chrony was found between the AC and AMG, but mainly between
the rostral and caudal portion of the AMG and the entire AC
(Fig. 11A). At 2 and 6 weeks after noise exposure, the increased
synchrony predominantly occurred between the high-frequency
regions of the AC and the entire AMG (Fig. 11B—C).

The current results are consistent with a previous report that
neural activity in the AC positively co-varies with that in the AMG
(Morris et al., 1998). In addition, the output of the AMG affects in-
formation processing and plasticity in the AC (Armony et al., 1998;
Duvel et al., 2001) which is mediated by direct amygdaloauditory
cortical projections (McDonald and Jackson, 1987; Yukie, 2002).
After noise exposure to induce tinnitus, the increased neuro-
synchrony between the AMG and AC may underlie both the sound
perception through the auditory pathways and emotional distress

through the limbic system. This is also supported by the notion that
increased interneuron synchrony generally yields a more efficient
excitation of downstream neurons (Eggermont and Tass, 2015), i.e.,
in both the AMG and AC. We did not see increased neurosynchrony
in tinnitus(—) rats, potentially due to less significant loss of afferent
input to the high-frequency region of the AC in those rats,
compared to tinnitus(+). Second, in the tinnitus(+) rats, the more
susceptible high-frequency region in the AC lost normal afferent
input, which triggers maladaptive plasticity by gain up-regulation
to maintain homeostasis. Such gain upregulation may result in
enhanced auditory input to the high-frequency region in the AC
from adjacent or lower-frequency regions from the AC or subcor-
tical nuclei. In the AMG, there is a possibility that noise-trauma-
induced excitotoxicity through AC afferent input onto the inter-
inhibitory neurons in the AMG may have diminished the inhibi-
tory effects on the principal neurons in the basolateral nucleus of
the AMG. This eventually causes increased firing in the AMG, which
in turn leads to the synchronous firing between the AMG and AC.
Third, when examining the distribution patterns in the synchrony
matrix before noise trauma (seed Fig. 11A), the moderate level of
synchrony existed between the rostral and caudal regions in the
AMG and the entire AC indicates that there was no damage to any
frequency regions in the AC. However, after noise exposure to
induce tinnitus, the increased synchrony shifted to the high-
frequency region in the AC and the increased synchrony occurred
when the entire AMG was recorded (Fig. 11B—C). The shift towards
the high-frequency region in the AC may be attributed to
compensatory gain as a result of damage to the high-frequency
region. However, it is not clear why the entire AMG was involved
in the increased synchrony with the AC. Nevertheless, the result
implies that tinnitus may involve auditory attention, especially
sharp and annoying perceptions to high-frequency tones (Zwicker
and Fastl, 1990). Taken together, these findings suggest that the
AMG may actively interact with the AC in the etiology and
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Fig. 11. A—C. Neurosynchrony as revealed by correlogram rate matrix between the AC and AMG of tinnitus"*) group. The matrix provides the visualization and evaluation of
neurosynchrony of multi unit recording from different channels. The resultant grid displays the reference channel (y-axis) vs. target channel (x-axis), with the z-axis color pro-
portional to the degree of correlation. The Y axis represents the data from the AMG and the X axis represents the data from the AC. The correlogram rate significantly increased after
noise lesion. D. Changes in the normalized correlogram rates between the AC and the AMG of anesthetized rats. The correlogram ratio of the tinnitus positive group significantly

increased after noise lesion compared to tinnitus negative and control groups.

perception of tinnitus.

6. Conclusions

Tinnitus is often accompanied by anxiety, increased irritability,
sleep disturbance, and emotional distress, although their relation-
ship with tinnitus may not be totally linear. This illustrates the
active involvement of limbic-associated dysfunctions in the etiol-
ogy and perception of tinnitus. This paper reviewed the psycho-
physical evidence and neural activity related to noise-induced
tinnitus that we found in the projects funded by the Tinnitus
Research Consortium.

Behaviorally, we have tested for tinnitus by using different
paradigms such as a conditioned suppression/avoidance paradigm,
gap detection acoustic reflex behavioral paradigm, and our newly
developed conditioned licking suppression paradigm. Each of the
above paradigms has strengths and weaknesses. The new tinnitus
behavioral paradigm possesses several strengths, including rela-
tively short baseline training requirements, frequency specification
of tinnitus perception, and sensitive tinnitus testing at the indi-
vidual level. To test for tinnitus-related limbic dysfunctions, we
used elevated plus maze and Morris water maze to determine
whether tinnitus positive rats displayed greater anxiety and
cognitive impairment, respectively. We found that the majority of
rats with highest anxiety levels had tinnitus. We did not find spatial
cognitive deficits in tinnitus positive or negative rats, which reflect
the clinical population where only certain tests have uncovered
cognitive dysfunction in a portion of tinnitus subjects.

Immunocytochemically, we found that hamsters with evidence
of tinnitus manifested increased FLI in the contralateral lateral
lemniscus, and bilateral central nucleus of the inferior colliculus
and AC. The fact that we did not find increased FLI in the lower
brainstem structures suggests that they may be involved in acute
tinnitus whereas the midbrain and cortex are involved in more
chronic tinnitus. At the same time, we found that animals with

tinnitus manifested increases in FLI in many autonomic brain
structures, and structures involved in behavioral responses to
stress, arousal and attention and fear-conditioning.

Electrophysiologically, we found that rats with tinnitus devel-
oped increased spontaneous firing and neurosynchrony in the AC.
This emphasizes the notion that the tinnitus percept is of cortical
origin and that hyperactivity and synchronous firing within the AC
are important neural correlates of tinnitus. Such increased spon-
taneous firing and neurosynchrony were also found in the AMG of
rats with tinnitus. Furthermore, inter-auditory (AC) and non-
auditory (AMG) structural neurosynchrony were increased in rats
with tinnitus. The increased synchrony predominantly occurred
between the high-frequency regions of the AC and the entire AMG
over time. These findings suggest that tinnitus may be actively
produced and maintained by the interactions between the AC and
AMG.

Taken together, our results suggest that the chronic tinnitus
involves both auditory and non-auditory structures, and that the
limbic system plays an important role in tinnitus perception. These
findings further support treatment strategies that modulate neural
activity in both auditory and non-auditory systems.
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