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Under a “cocktail-party” listening condition with multiple-people talking, compared to

healthy people, people with schizophrenia benefit less from the use of visual-speech

(lipreading) priming (VSP) cues to improve speech recognition. The neural mechanisms

underlying the unmasking effect of VSP remain unknown. This study investigated

the brain substrates underlying the unmasking effect of VSP in healthy listeners and

the schizophrenia-induced changes in the brain substrates. Using functional magnetic

resonance imaging, brain activation and functional connectivity for the contrasts of

the VSP listening condition vs. the visual non-speech priming (VNSP) condition were

examined in 16 healthy listeners (27.4 ± 8.6 years old, 9 females and 7 males) and 22

listeners with schizophrenia (29.0 ± 8.1 years old, 8 females and 14 males). The results

showed that in healthy listeners, but not listeners with schizophrenia, the VSP-induced

activation (against the VNSP condition) of the left posterior inferior temporal gyrus

(pITG) was significantly correlated with the VSP-induced improvement in target-speech

recognition against speech masking. Compared to healthy listeners, listeners with

schizophrenia showed significantly lower VSP-induced activation of the left pITG and

reduced functional connectivity of the left pITG with the bilateral Rolandic operculum,

bilateral STG, and left insular. Thus, the left pITG and its functional connectivity may be the

brain substrates related to the unmasking effect of VSP, assumedly through enhancing

both the processing of target visual-speech signals and the inhibition of masking-speech

signals. In people with schizophrenia, the reduced unmasking effect of VSP on speech

recognition may be associated with a schizophrenia-related reduction of VSP-induced

activation and functional connectivity of the left pITG.

Keywords: speech recognition, cocktail-party problem, lipreading, visual speech priming, informational masking,

unmasking, schizophrenia, inferior temporal gyrus
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INTRODUCTION

How are people able to detect, locate, and identify ecologically
important sounds in complex acoustic environments?
Recognizing target speech under noisy “cocktail-party”
conditions with multiple-people talking is one of the most
difficult tasks where listeners need to facilitate the perceptual
segregation between target speech and masking speech using
some perceptual and/or cognitive cues (Freyman et al., 2004;
Helfer and Freyman, 2005, 2009; Schneider et al., 2007; Wu
et al., 2012, 2013a,b; Zheng et al., 2016). Lipreading is one of the
cues that can help people follow the target-speech stream of the
attended speaker under “cocktail-party” conditions (Helfer and
Freyman, 2005; Wu et al., 2013a,b).

In a face-to-face conversation, speech information contained
in speech lipreading is both redundant and complementary to
speech sounds (Summerfield, 1979). More in detail, the visual-
auditory temporal synchrony (temporally co-modulated visual
and auditory information) indicates the distinctive rate and
dynamic phase of target-speech syllables, and consequently it
both facilitates listeners’ selective attention to the time windows
that contain target syllables and forms the expectation of the
forthcoming components of the target stream (Wright and
Fitzgerald, 2004). Moreover, the degree of mouth opening of the
target talker is related the overall amplitude contour of speech
(Summerfield, 1992; Grant and Seitz, 2000). Finally, speech-
lipreading signals also contain important phonetic information,
including that of vowels, diphthongs, and place of articulation of
consonants (Summerfield, 1992).

In a noisy environment, when a listener feels it difficult to
comprehend what a talker has said in a face-to-face conversation,
the listener usually asks the talker to repeat the attended
sentence(s). The beneficial effect of “say-it-again” can be caused
by viewing a talker’s movements of speech articulators (i.e.,
the unmasking effect of visual-speech prime, VSP, Wu et al.,
2013a,b). The unmasking effect of VSP is normally based
on the incorporation of several perceptual/cognitive processes,
including the processing of speech information contained
in lipreading, working memory of lipreading information,
audiovisual integration during the co-presentation of the target
speech and the masking speech, selective attention on target
speech, and suppression of irrelevant masking signals (Wu et al.,
2013a). People with schizophrenia, however, show impaired
ability of using the temporally pre-presented lip-reading cue
to improve target-speech identification against speech masking
(Wu et al., 2013b), possibly suggesting a combined effect of
working-memory deficits (Forbes et al., 2009), cross-modal-
integration deficits (Ross et al., 2007; Wu et al., 2013b), and
object-oriented-attention deficits (Zheng et al., 2016; Wu et al.,
2016).

Over the past decade, considerable progress has been made in
localizing the brain regions that are involved in either processing
of speech lipreading (Ludman et al., 2000; Campbell et al.,
2001; Calvert and Campbell, 2003; Capek et al., 2008; Xu et al.,
2009; Bernstein and Liebenthal, 2014) or perception of masked
speech (Scott et al., 2004; Badcock and Hugdahl, 2012; Scott
and McGettigan, 2013). For example, compared to stilled visual

speech images, moving visual speech images (lipreading) induce
activation in the bilateral lingual gyrus, superior/middle temporal
cortex, bilateral parietal lobule, and bilateral inferior frontal
gyrus (IFG) (Calvert et al., 1997; Calvert and Campbell, 2003).
Particularly, the inferior temporal gyrus (ITG) is activated by
observation of face gestures (Bernstein et al., 2011), speaking
faces (Ludman et al., 2000; Campbell et al., 2001), or symbolic
gestures (Xu et al., 2009). As for the processing of masked
speech, there is extensive, level-independent activation in the
dorsolateral temporal lobes associated with the contrast of
speech-in-speech over speech-in-noise conditions (Scott et al.,
2004; Scott and McGettigan, 2013). Moreover, fMRI-recording
studies on audiovisual integration have shown that increased
BOLD signals are observed in the bilateral posterior superior
temporal sulcus (pSTS) when processing audiovisual speech with
degraded auditory stimulation (Szycik et al., 2008), and in the left
ITG when processing multi-modal semantic signals associated
with the meaning of speech (Wise et al., 1991; Vandenberghe
et al., 1996; Mummery et al., 1999; Giraud and Truy, 2002).
However, the neural mechanism underlying the unmasking effect
of VSP on target-speech recognition against speech masking
remains unknown.

Up to date, it has not been clear whether the brain substrates
underlying the unmasking effect of VSP are impaired in people
with schizophrenia. It has been shown that deficits of audiovisual
integration are amongst the most consistent perceptive and
cognitive impairments in people with schizophrenia (Surguladze
et al., 2001; de Gelder et al., 2005; Foucher et al., 2007; de
Jong et al., 2009; Szycik et al., 2009; Williams et al., 2010). Less
activation in the right IFG, bilateral superior/middle temporal
gyri, and left posterior ITG have been observed in people
with schizophrenia while performing the silent lip-reading task
(Surguladze et al., 2001). People with schizophrenia also show
an inverted response direction in the right medial frontal gyrus,
right IFG, bilateral caudate and fusiform gyrus in the congruent
vs. incongruent audiovisual task (Szycik et al., 2009). In
particular, people with schizophrenia exhibit deficits in benefiting
from visual speech (lipreading) information when processing
auditory speech (de Gelder et al., 2005; Ross et al., 2007;Wu et al.,
2013b). Thus, investigation of the brain substrates underlying
the unmasking effect of VSP may further our understanding of
schizophrenia.

Using the functional magnetic resonance imaging (fMRI)
method, this study was to investigate the brain substrates
underlying the unmasking effect of VSP in healthy listeners and
in listeners with schizophrenia.

METHODS

Participants
Patients with schizophrenia were diagnosed with the Structured
Clinical Interview for DSM-IV (SCID-DSM-IV) (First et al.,
1997), and were recruited in the Affiliated Brain (Huiai) Hospital
of Guangzhou Medical University with the recruiting criteria
used previously (Wu et al., 2012; Zheng et al., 2016). Patients with
diagnoses of schizoaffective or other psychotic disorders were not
included. Some potential patient participants were excluded from
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this study if they had comorbid diagnoses, substance dependence,
or other conditions that affected experimental tests (including
hearing loss, a treatment of the electroconvulsive therapy (ECT)
within the past 3 months, a treatment of trihexyphenidyl
hydrochloride with a dose of more than 6 mg/day, or an age
younger than 18 or older than 59).

Demographically matched healthy participants were recruited
from the community around the hospital with the recruiting
criteria used previously (Wu et al., 2012; Zheng et al., 2016).
They were telephone-interviewed first and then those who passed
the interview were screened with the SCID-DSM-IV as used for
patient participants. None of the selected healthy participants had
either a history of Axis I psychiatric disorder as defined by the
SCID-DSM-IV.

Patient participants, patient guarantees, and healthy
participants gave their written informed consent for participation
in this study. The procedures of this study were approved by
the Independent Ethics Committee (IEC) of the Affiliated Brain
(Huiai) Hospital of Guangzhou Medical University.

Twenty-five patients with schizophrenia and 17 healthy
listeners participated in this study. Three patients and 1 control
participant were excluded from data analyses due to excessive
head movement during fMRI scanning (>3 mm in translation or
>3◦ in rotation from the first volume in any axis). The remaining
22 patients (14 males and 8 females, with age 29.0 ± 8.1 years)
and 16 healthy participants (7 males and 9 females, with age
27.4 ± 8.6 years) were included in fMRI data analyses and
behavioral testing. All the participants were right-handed with
pure-tone hearing thresholds (<30 dB HL) between 125 and
8,000Hz for the two ears, and had normal or corrected-to-normal
vision. Their first language was Mandarin Chinese. All patient
participants received antipsychotic medications during this study
with the average chlorpromazine equivalent of 521mg/day
(based on the conversion factors described by Woods, 2003)
and were clinically stable during their participation. For the
purpose of improving sleeping, some of the patient participants
also received benzodiazepines based on doctors’ advice. The
locally validated version of the Positive and Negative Syndrome
Scale (PANSS) tests (Si et al., 2004) was conducted on the
day of fMRI scanning for all participants. The characteristics
of patient participants and healthy participants are shown in
Table 1.

Procedures of the fMRI Experiment
Stimuli and Design
There were three types of stimuli: (auditory) target-speech
stimuli, (auditory) masking-speech stimuli, and visual priming
stimuli. The target-speech stimuli used in both the fMRI
experiment and the behavioral testing were “nonsense” Chinese
phrases with 3 words and each word contained 2 syllables (in total
6 syllables in a phrase). These phrase were syntactically ordinary
but not semantically meaningful (Yang et al., 2007; see Wu et al.,
2013b), and spoken by a young female talker (Talker A). For
example, the English translation of a phrase is “retire his ocean”
(keywords are underlined). Obviously, the phrase frame provided
no contextual support for recognizing individual keywords. The
duration of a target phrase was around 2,200ms (Figure 1).

TABLE 1 | Characteristics of patients with schizophrenia and healthy

controls.

Basic characteristic Patients with

schizophrenia

Healthy people

(n = 22) (n = 16)

Age (years ± SD) 29.00 (8.05) 27.44 (8.63)

Male % (n) 63.55 (14) 43.75 (7)

Education (years ± SD) 13.14 (2.47) 15.00 (2.58)

MID (years ± SD) 5.49 (4.05) NA

PANSS total 53.64 (6.04) NA

PANSS positive 14.86 (4.16) NA

PANSS negative 11.45 (4.03) NA

PANSS general 34.56 (9.62) NA

Medication Patient Number

Typical 5 NA

Atypical 19 NA

Typical and atypicala 2 NA

Chlorpromazine equivalent Mean (SD): 521 (223) NA

Range: 225–1,000

MID, mean illness duration; NA, not applicable; PANSS, Positive and Negative Syndrome

Scale; SD, standard deviation.
aTwo patients received both typical and atypical antipsychotic medications.

The masking-speech stimuli were a 47-s loop of
digitally-combined continuous recordings for Chinese nonsense
sentences (whose keywords did not appear in target sentences)
spoken by two different young female talkers (Yang et al., 2007).
In a trial, the masker started at a random position of the loop
and the duration of the masker was adjusted equal to that of the
target phrase.

There were two types of visual priming stimuli: (1)
(lipreading) visual-speech priming (VSP) stimuli, whose
associated content and duration were identical to those of their
corresponding target phrases; (2) (lipreading) visual non-speech
priming (VNSP) stimuli, whose facial movements were not
related to any speech content (i.e., alternations of mouth-open
and mouth-close movements, used as the control stimulation
condition for the VSP-stimulation condition; Calvert et al., 1997;
Calvert and Campbell, 2003) and whose durations were also
identical to those of the following target phrases. To minimize
the facial identity effect, only the lower half part of the priming
talker’s face was displayed (Wu et al., 2013a,b). The duration
of visual priming stimuli were identical to that of target speech
stimuli.

As the general controlling condition for both the VSP
condition and the VNSP condition (to control both the facial
features and the auditory non-speech features for VSP and VNSP
conditions), a baseline-stimulation condition was introduced
with presenting both a still face (duration = 2,200 ms) and a
period of silence (duration = 2,200 ms) (Figure 1). The same
talker’s face was used for both the 2 priming conditions and the
baseline-stimulation condition.

The whole-course scanning consisted of a 10-min visual-
priming functional run and an 8-min structure-scanning run.
An event-related fMRI design was used for the functional run.
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FIGURE 1 | A functional run comprised 60 trials (20 trials for each of

the three conditions: VSP, VNSP and baseline simulation) presented in

random order. Sparse temporal sampling was used to acquire images. Trial

structures of each of the three conditions were illustrated respectively. Under

the visual priming condition, a priming stimulus was presented 600ms after

the scanning, then the target and masker sounds were co-presented, and

terminated at the same time. The midpoint of the stimulus was presented 4.2 s

prior to the next scanning. VSP, visual speech priming; VNSP, visual

non-speech priming; TR, time to repeat.

In total, there were 60 scanning trials for the functional run
(20 trials for each of the 3 conditions: VSP, VNSP, and baseline
stimulation). For an individual participant, the 60 trials across
the 3 conditions were presented with a random order.

The sparse-temporal imaging strategy was used to avoid
the effect of machine scanning noise: the acoustic stimulus
presentation was temporally positioned so that the stimulus
midpoint was 4,200 ms before the onset of the next scanning.
Thus, the stimulus-evoked hemodynamic responses peaked
during the scanning period (Wild et al., 2012; Zheng et al., 2016).

The sound pressure level of target speech was 60 dB SPL
(after attenuation by earplugs) in the fMRI experiment, and the
signal-to-masker ratio (SMR) was set as−4 dB.

In a scanning trial under either the VSP or VNSP condition
(Figure 1), the priming stimulus was presented 600 ms after
the offset of the last scanning trial. Immediately after the
prime presentation, the target and masker were presented and

terminated simultaneously. To maintain participants’ attention
to the stimuli, at the end of a trial (after the acoustic stimuli
were presented), participants were instructed to use button
pressing with their right index finger to indicate whether
the pre-presented lipreading prime was matched to the target
phrase or not. Scores of button-pressing was recorded. A brief
training was provided to ensure that participants understood
the instructions and knew how to conduct their button-pressing
responses. Before the fMRI experiment and the behavioral
testing, participants also received a specific training to distinguish
VSP stimuli from VNSP stimuli. Speech stimuli used in training
were different from those used in formal experiments.

Equipment
During fMRI scanning, acoustic stimuli were presented through
a magnetic resonance-compatible pneumatic headphone system
(SAMRTEC, Guangzhou, China) driven by Presentation software
(Version 0.70). Visual stimuli were presented through a liquid-
crystal-display screen positioned on the head-coil (SAMRTEC,
Guangzhou, China). A 3.0-Tesla Philips Achieva MRI scanner
(Veenpluis 4-6,5680 DA Best, Netherlands) was used to acquire
blood oxygenation level dependent (BOLD) gradient echo-planar
images (spatial resolution: 64 × 64 ×33 matrix with 3.44 × 3.44
× 4.6 mm3; acquisition time: 2,000 ms; time to repeat: 9,000 ms;
echo time: 30 ms; flip angle: 90◦; field of view: 211 × 211 mm).
It provided high-resolution T1-weighted structural images (256
× 256 × 188 matrix with a spatial resolution of 1 × 1 × 1 mm3,
repetition time: 8.2 ms; echo time: 3.8 ms; flip angle: 7◦).

fMRI Data Processing and Analyses
Pre-processing
All fMRI data were processed and analyzed using the Statistical
Parametric Mapping (SPM8, the Wellcome Trust Centre for
Neuroimaging, London, UK). The pre-processing of data
included the following stages: (1) The functional images were
corrected for head movements. (2) The anatomical images
were co-registered with the mean realigned images and were
normalized to standard template (ICBM space) using the
SPM8 unified segmentation routine. (3) All functional images
were warped using deformation parameters generated from the
normalization process, including re-sampling to a voxel size of
3.0 × 3.0 × 4.0 mm3. (4) Spatial smoothing was conducted
using a Gaussian kernel with 8 mm full-width at half maximum
(FWHM). Due to the long TR of this sparse-imaging paradigm,
no slice timing correction was necessary.

Whole Brain Analyses
Random effect analyses contained two processing levels. At
the first level, the onsets and durations for the functional run
were modeled using a General Linear Model (GLM) according
to the condition types. Three conditions (VSP, VNSP, and the
baseline) were included in the model. Time series on the six
realignment parameters of head movement were also included
as regressors of no interest in the GLM design matrix to
account for residual movement-related effects (Friston et al.,
1996). Contrasts of “VSP > baseline,” “VNSP > baseline” and
“VSP > VNSP” were made for each participant at the first
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level. At the second level, random-effect analyses were conducted
based on the statistical parameter maps from each individual
participant to allow population inference. Contrast images of
“VSP > baseline,” “VNSP > baseline” from the first-level analysis
in each participant were entered into the second-level full-factor
2 (group: control, patient) by 2 (condition: “VSP > baseline,”
“VNSP> baseline”) ANOVA to detect interaction between group
and priming type. Contrast images of “VSP > VNSP” from the
first-level analysis in each participant were entered into a second-
level two-sample t-test to explore the group differences in brain
activation induced by VSP directly. For the whole-brain analyses,
peak signals that were statistically significant at p-value less than
0.05 [False Discovery Rate (FDR) corrected] were reported.

Region-of-Interest (ROI) Analyses
As mentioned above, the contrast of “VSP > VNSP” was
computed to map the brain regions that were activated by the
processing of the speech lipreading-induced priming (the VSP).
These brain regions were called VSP-activated brain regions.

ROI analyses and correlation analyses were conducted to
identify the VSP-activated brain regions that were also correlated
to the “VSP effect” of speech recognition in the behavioral testing
(the difference in percent correct of target-speech recognition
between the VSP condition and the VNSP condition). More in
detail, first, based on the group mean “VSP > VNSP” contrast
(p < 0.05, FDR corrected), a functionally-defined ROI was a
sphere with a radius of 5 mm centered at MNI coordinates of
peak activation. In addition, the parameter estimates of signal
intensity of each ROI under each condition were extracted
from each individual participant (MarsBaR: region of interest
toolbox for SPM; http://marsbar.sourceforge.net/). Moreover, for
each ROI, the contrast value (CV) for the speech-lipreading
priming process (i.e., the parameter estimate difference between
the VSP condition and the VNSP condition) was calculated (Wild
et al., 2012). Finally, partial correlation analyses (age, hearing
threshold, education level, and sex were the covariates) were
conducted using SPSS 16.0 software to investigate the correlation
between the brain activation induced by the “VSP > VNSP”
contrast in the fMRI measuring and the unmasking effect of the
VSP stimulus in the behavioral testing.

Functional Connectivity Analyses:

Psychophysiological Interaction
Psychophysiological interaction analyses (Friston et al.,
1997) were conducted to identify brain regions that showed
significantly increased or reduced covariation (i.e., functional
connectivity) with the seed region activity related to the
VSP (VSP > VNSP) effect in both healthy participants and
participants with schizophrenia.

For both healthy participants and participants with
schizophrenia, the seed ROI was defined in the brain region
that exhibited more activation in healthy participants than that
in people with schizophrenia from the whole brain ANOVA
analyses. The seed ROI in each individual participant was
defined as a sphere with 5-mm-radius centered at the peak
MNI coordinate in the seed region. First, the time series of seed
region were extracted, and the PPI regressors which reflected

the interaction between psychological variable (VSP vs. VNSP)
and the activation time course of the seed ROI were calculated.
Second, the individual contrast images (regressors) were
subsequently subjected to the second-level one-sample t-tests
in each of the participant groups to identify the brain regions
showing increased co-variation with the activity of the seed
region in analyses of the VSP condition vs. the VNSP condition.
Finally, contrast images of each participant in the control group
and patient group were entered into the second-level two-sample
t-tests for group comparisons. In PPI analyses, peak signals
that were statistically significant at p-value less than 0.05 (FDR
corrected) were reported.

Behavioral Testing
The behavioral testing was conducted after the fMRI scanning
experiment. Acoustic signals, as used in the fMRI experiment,
were calibrated by a sound-level meter (AUDit and System 824,
Larson Davis, USA) and delivered from a notebook-computer
sound card (ATI SB450 AC97) to participants via headphones
(Model HDA 600). The target-speech level was 60 dB SPL and
the SMR was either−4 or−8 dB. There were two within-subject
variables: (1) priming type (VSP, VNSP), and (2) SMR (−8,
−4 dB). For each participant, there were 4 testing conditions
and 20 trials (also 20 target-sentence presentations) for each
condition. The presentation order for the 4 conditions (i.e.,
the 4 combinations of priming type and SMR) were partially
counterbalanced across participants using a Latin square order.

In a trial, the participant (who was seated at the center of a
quiet room) pressed the “Enter” key on a computer keyboard to
start the presentation of the visual priming stimulus. Immediately
after the presentation of the visual priming stimulus, the target
phrase was co-presented with the masking speech (the target
and masker began and terminated at the same time). After the
masker/target co-presentation, the participant was instructed to
loudly repeat the whole target phrase as best as he/she could.
The experimenters, who sat quietly behind the participant, scored
whether each of the two syllables of the keywords in the target
phrase had been identified correctly. In the behavioral testing,
the unmasking effect of VSP was defined as the difference in
percent correct of target speech recognition between the VSP-
listening condition and the VNSP-listening condition averaged
across SMRs. Analyses of variance (ANOVA) were performed
using SPSS 16.0 software. The null hypothesis was rejected at the
level of 0.05.

RESULTS

The Unmasking Effect of VSP on
Speech-Recognition Performance
Figure 2 (upper panel) shows comparisons in group-mean
percent-correct recognition of the two target keywords between
the healthy participants and participants with schizophrenia
under the VSP condition and the VNSP condition, respectively.
The 2 (group: control, patient) by 2 (priming type: VSP, VNSP)
ANOVA showed that the main effect of group was significant
[F(1, 72) = 90.302, p< 0.001, η2

= 0.559], the main effect of prime
was significant [F(1, 72) = 4.548, p = 0.036, η

2
= 0.059], and

Frontiers in Neuroscience | www.frontiersin.org 5 March 2017 | Volume 11 | Article 107

http://marsbar.sourceforge.net/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Wu et al. Visual Speech Priming

the interaction between group and priming type was significant
[F(1, 72) = 4.817, p = 0.031, η

2
= 0.063]. Obviously, healthy

participants had better speech-recognition performance than
patient participants.

The control group, but not the patient group, was able to
use the lipreading cue to improve target-speech recognition
(p = 0.002 for the control group, and p = 0.965 for the
patient group). Figure 2 (lower panel) and Figure S2 show
that the VSP effect (difference in percent correct of target
speech recognition between the VSP condition and the VNSP
condition) was significantly higher in healthy participants than
that in participants with schizophrenia (t = 3.519, p = 0.001;
Cohen’s d = 1.13; 95% CI: 0.43–1.84). Figure S1 also shows the
significantly lower percent correct of button-pressing response

FIGURE 2 | Upper panel: Comparisons in group-mean percent-correct

recognition of the two target keywords against speech masking between the

control group and the patient group under the VSP listening condition and the

VNSP listening condition (averaged across SMRs of −4 and −8 dB). Lower

panel: Difference in the group-mean unmasking effect (VSP effect: difference

in percent correct of target speech recognition between VSP and VNSP

conditions) between healthy participants and people with schizophrenia

(averaged across SMRs of −4 and −8 dB). Error bars indicate the standard

errors of the mean. VSP, visual speech priming; VNSP, visual non-speech

priming. *p < 0.05, **p < 0.01.

for patients than that for healthy participants during fMRI
scanning (t = 5.507; p < 0.001).

Brain Substrates Associated with the
Unmasking Effect of VSP in Healthy
Participants
Brain Regions Activated by the VSP > VNSP Contrast
The “VSP > VNSP” BOLD contrast was used to determine
the brain regions that were activated by the VSP-stimulation
condition. The results showed that in healthy participants, but
not participants with schizophrenia, compared to the VNSP
condition, introducing the VSP condition significantly enhanced
BOLD signals in the bilateral posterior inferior temporal gyrus
(pITG) and bilateral fusiform gyrus (FG) (p < 0.05, voxel-wise
FDR corrected) (Figure 3, Table 2). These 4 brain regions are
called “VSP-activated brain regions”.

VSP-Activated Brain Regions That Were Specifically

Correlated to the Unmasking Effect of VSP
To further search for the VSP-activated brain regions that were
specifically associated with the (behavioral) unmasking effect of
VSP in the behavioral testing (so-called “unmasking-correlated
brain regions”), the parameter estimates of signal intensity of
each of the four VSP-activated brain ROIs (i.e., left pITG, right

FIGURE 3 | Brain regions activated by the contrast of “VSP > VNSP” (in

healthy people), including the bilateral pITG and bilateral FG. The

activation maps were thresholded at p < 0.05 (voxel-wise FDR corrected, T >

4.87) and overlaid on the group-average structural image. FG, fusiform gyrus;

pITG, posterior inferior temporal gyrus; VSP, visual speech priming; VNSP,

visual non-speech priming.

TABLE 2 | MNI coordinates of the brain regions associated with the

contrast of the visual speech priming (VSP) condition against the visual

non-speech priming (VNSP) condition in healthy participants.

Coordinates Statistics Location

X Y Z k T Z-score PFDR-corr

−48 −43 −14 66 5.73 4.70 0.012 L pITG

48 −40 −14 51 5.61 4.62 0.012 R pITG

45 −43 −22 58 5.57 4.60 0.012 R Fusiform

−33 −13 −26 82 4.87 4.16 0.014 L Fusiform

Peaks were significant at p < 0.05 (voxel-wise FDR corrected with an extent threshold

of more than 40 voxels; T > 4.87) are shown in the table. MNI coordinates, k (number

of voxels), T-value, and Z-scores and corrected P-values are provided. pITG, posterior

inferior temporal gyrus; L, left; R, right.
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pITG, left FG, and right FG), which was defined by a sphere with
a radius of 5 mm centered at peak MNI coordinates based on
the “VSP > VNSP” contrast (see Figure 3 and Table 2), were
extracted and the contrast value (CV) for the “VSP > VNSP”
contrast was calculated for each individual participant (Wild
et al., 2012). Then, the correlation between the VSP-induced
(behavioral) improvement of target-speech recognition (with age,
sex, hearing threshold, and educational level controlled) and each
CV (for each of the 4 ROIs) was examined.

The results showed that significant correlation occurred only
between the VSP-induced CV of the left pITG and the VSP-
induced improvement of target-speech recognition (r = 0.611,
p = 0.012) (Figure 4). Thus, the left pITG was recognized as the
brain region specifically related to the VSP-unmasking effect (i.e.,
the unmasking-correlated brain region).

Differences in BOLD Signals Induced by
VSP between Healthy Participants and
Participants with Schizophrenia
The whole brain ANOVA analyses revealed no interaction
between group and the priming type. The main effect of priming
type was not significant [at the p < 0.001 (uncorrected)]. The
contrast assessing the main effect of group (patient vs. control)
revealed the significantly reduced activation in the bilateral
triangularis of inferior frontal gyrus (TriIFG), left postcentral,
left superior temporal sulcus (STS), left caudate, left fusiform, left

FIGURE 4 | For healthy people, significant correlation occurred

between the unmasking effect of VSP (difference in percent correct of

target speech recognition between the VSP condition and the VNSP

condition averaged across SMRs) and the intensity of VSP-induced

brain regional activity (the contrast value of VSP > VNSP) in left pITG

(with age, hearing threshold, education level and sex controlled), but

not that in the right ITG, left FG, or right FG. FG, fusiform gyrus; pITG,

posterior inferior temporal gyrus; VSP, visual speech priming; VNSP, visual

non-speech priming.

pITG, right precentral, and right thalamus (see Figure S3, and
Table S1) (F-contrasts are significant at p < 0.05 with voxel-wise
FDR correction).

To test the difference in VSP-induced percent BOLD signal
change in left pITG (which was discovered as an unmasking
correlated brain region) between participants with schizophrenia
and healthy participants more directly, the contrast value of
VSP> Baseline, VNSP> Baseline were calculated and compared
between the two participant groups. The ANOVA showed that
the main effect of the group [F(1, 72) = 29.669, p < 0.001,
η
2
= 0.29] and the priming type [F(1, 72) = 4.289, p = 0.042,

η
2

= 0.056] on BOLD signal in left pITG were significant, and
the interaction was not significant [F(1, 72) = 2.768, p = 0.100]
(Figure 5, upper panel). The VSP-induced contrast value (VSP >

VNSP) was significantly lower in the patient group than that in
the control group [F(1, 36) = 12.649, p= 0.001; Cohen’s d = 1.51;
95%CI: 0.75–2.26] (Figure 5, lower panel).

In this study, we also computed the frame-wise displacement
(FD) for each time point in each participant and tested the

FIGURE 5 | Compared to healthy control group, patient group exhibited

lower BOLD signal (contrast value) in the left pITG under either the

VSP listening condition (VSP > Baseline) or the VNSP listening

condition (VNSP > Baseline) (upper panel). Compared to healthy control

group, People with schizophrenia showed lower group-mean BOLD signal in

the left pITG induced by VSP (contrast value of VSP > VNSP) (lower panel).

VSP, visual speech priming; VNSP, visual non-speech priming. *p < 0.05,

**p < 0.01.
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group difference in FD between controls and people with
schizophrenia. Motion-related artifact might impact findings for
group difference (Yan et al., 2013), even though task-fMRI is
much more tolerant to head motion than rest-fMRI (Friston
et al., 1996), particularly when the presence of motion-related
noise or the motion self is unrelated to the task. We did
not find significant difference in mean FD at each time point
between controls and patients (see Figure S4). Moreover, for the
group comparison, we have computed the data with individual
mean FD included as a regressor of no interest. The group
difference with individual mean FD regressed out were very
similar to those without individual mean FD regressed out. Thus,
in this study we reported the results without the mean FD
regressed out.

Functional Connectivity of the Left pITG
Associated with the Reduced VSP Effect in
Participants with Schizophrenia
A psychophysiological interaction analysis was conducted to
examine the differential functional connectivity of the left
pITG under the VSP condition compared to the VNSP
condition between healthy participants and participants with
schizophrenia. For both healthy participants and participants
with schizophrenia, the seed ROI of left pITG was defined as
the brain region which exhibited more activation in healthy
participants than patients, with the coordinate of the peak
activation of [−36,−52,−18].

In healthy participants, enhanced functional connectivity with
the left pITG for the “VSP vs. VNSP” contrast occurred in the
bilateral STG, bilateral medial superior frontal gyrus (mSFG),
bilateral cerebellum, left precentral cortex, left postcentral cortex,
left opercularis IFG, left insular, left SupraMarginal and left
supplementary motor area (SMA), and right middle frontal gyrus
(MFG). On the other hand, reduced functional connectivity was
observed in the right posterior STG and right middle occipital
cortex (Figure 6 upper panel and Table S2).

In participants with schizophrenia, enhanced functional
connectivity with the left pITG for the “VSP vs. VNSP” contrast
was observed in the left SFG. Reduced functional connectivity
was observed in the bilateral rolandic operculum, left fusiform,
left lingual, right supra-marginal area, and right thalamus. Thus,
participants with schizophrenia showed a different whole brain
pattern of functional connectivity with left pITG for the contrast
of the VSP condition vs. the VNSP condition (Figure 6 lower
panel, also see Table S2).

To explore the difference in functional connectivity with the
left pITG associated with the “VSP > VNSP” contrast between
healthy participants and participants with schizophrenia
statistically, an independent two-sample t-test was conducted.
Compared with healthy participants, reduced functional
connectivity with left pITG induced by VSP was found in
the bilateral rolandic operculum, bilateral STG, and left
insular in participants with schizophrenia. No significantly
enhanced functional connectivity was found in participants
with schizophrenia relative to healthy participants (Figure 7 and
Table 3).

FIGURE 6 | Psychophysiological interaction analyses of the

visual-speech priming effect (VSP > VNSP) for healthy participants

(upper panel) and people with schizophrenia (lower panel). The areas in

hot color-map indicate the enhanced functional connectivity with the left pITG

during “VSP > VNSP,” and the regions in cool color-map indicate the reduced

functional connectivity with the left pITG during “VSP > VNSP.” The activation

maps were thresholded at p < 0.05 (voxel-wise FDR corrected, T > 4.88) and

displayed on a template brain surface of inflated cortex from SPM8. VSP,

visual speech priming; VNSP, visual non-speech priming.

DISCUSSION

This study, for the first time, investigated the brain substrates
underlying the unmasking effect of VSP on target speech
recognition in healthy people, and the mechanisms underlying
the impaired unmasking effect of VSP in people with
schizophrenia. The results suggest that the left pITG may
play a critical role in mediating the unmasking effect of VSP in
healthy people, and the behavioral reduction in the VSP effect in
people with schizophrenia may be related to degraded activation
and functional connectivity of the left pITG.

Brain Regions Related to the Unmasking
Effect of VSP
The results of behavioral testing in this study confirm
previous reports that in a “cocktail-party” listening environment,
compared to healthy listeners, listeners with schizophrenia show
reduced ability in using temporally pre-presenting VSP cues to
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FIGURE 7 | Difference in brain regions exhibiting differential

psychophysical interaction with left posterior inferior temporal gyrus

associated with “VSP vs. VNSP” between healthy participants and

people with schizophrenia. The activation maps were thresholded at p <

0.05 (voxel-wise FDR corrected, T > 4.86) and overlaid on a template brain

surface of inflated cortex from SPM8. VSP, visual speech priming; VNSP, visual

non-speech priming.

TABLE 3 | Difference in brain regions exhibiting differential connectivity

with the left posterior inferior temporal gyrus associated with “VSP vs.

VNSP” between patients with schizophrenia and healthy controls.

Contrast Coordinates Statistics Location

X Y Z k T Z-score

Control > Patient −57 −28 18 43 5.72 5.19 L STG

−42 −28 14 87 5.63 5.12 L RO

−36 −13 2 56 4.88 4.53 L Insular

60 −19 18 260 5.68 5.15 R RO

54 −25 2 41 5.58 5.08 R STG

Control < Patienta

All peaks and clusters are significant at p < 0.05 (voxel-wise FDR corrected with an extent

threshold of more than 40 voxels; T > 4.86). MNI coordinates, k (number of voxels), T-

value, and Z-scores are provided. RO, Rolandic operculum; STG, superior temporal gyrus;

L, left; R, right.
aNo significant voxels were obtained at the threshold of p < 0.05 with voxel-wise FDR

correction.

improve target-speech recognition against speech masking (Wu
et al., 2013a,b).

One of the important findings of this study is that among
the 4 VSP-activated brain regions (left pITG, right pITG,
left FG, right FG), only the VSP-induced activation of the
left pITG is significantly correlated with the VSP-induced
(behavioral) improvement of target-speech recognition across
healthy listeners. The left pITG is therefore recognized as the
“unmasking-correlated brain region.”

Four essential neural mechanisms may simultaneously
underlie the unmasking effect of VSP: (1) the brain substrates
for processing speech information contained in lipreading, (2)
the working memory system retaining VSP signals throughout
the co-presentation of the target speech and the masking speech,

(3) the central cross-modal integration between visual-speech
(lipreading) signals and auditory-speech signals (including the
perceptual matching between the phonological/semantic signals
of visual lipreading and those of auditory target speech), and (4)
the brain substrates for selective attention on target speech and
suppression of irrelevant masking signals.

Evidence suggests that the ITG may be the only one brain
region that is involved in all the four mechanisms essential to
the unmasking effect of VSP: (1) Visual lipreading efficiently
activates the ITG (Ludman et al., 2000; Campbell et al., 2001;
Xu et al., 2009). For example, the Ludman et al. study (2000)
has shown that against a baseline condition where people
passively view a static image of a talker’s face, lipreading of the
talker’s speech activates the ITG. (2) There is evidence showing
that the ITG plays a critical role in mediating visual working
memory (Ranganath et al., 2004; Ranganath, 2006; Woloszyn
and Sheinberg, 2009). (3) The left pITG is one of the multi-
modal semantic-processing areas associated with the meaning of
speech (Wise et al., 1991; Vandenberghe et al., 1996; Mummery
et al., 1999; Giraud and Truy, 2002). (4) The ITG is involved
in selective attention to attended signals and suppression of
distractive signals (Chelazzi et al., 1993, 1998; Zhang et al., 2011).

The absence of correlation between VSP-induced activation of
the right ITG and the VSP-induced behavioral improvement may
suggest that the right ITG is functionally different from the left
ITG in the VSP-induced unmasking process. It has been reported
that both the left and right ITG can be activated by observation
of non-speech face gestures (Bernstein et al., 2011), speaking
faces (Ludman et al., 2000; Campbell et al., 2001), or symbolic
gestures (Xu et al., 2009). The left and right ITG are also involved
in working memory for visual object (Ranganath et al., 2004;
Ranganath, 2006; Woloszyn and Sheinberg, 2009) and visual
attentional processes (Chelazzi et al., 1993, 1998; Zhang et al.,
2011). However, the left ITG, but not the right ITG, is activated
by the processing of brief speech sounds (Alain et al., 2005),
discrimination of speech sounds (Ikeda et al., 2010), resolution
of semantic ambiguity in spoken sentences (Rodd et al., 2012),
integration of auditory and visual signals (Romanski, 2012), or
comprehension of speech signals (Giraud and Truy, 2002). Thus,
although the right ITG shares some functions with the left ITG,
it does not seem to be involved in more specific, more complex,
and higher-order processing of speech signals.

In this study, the bilateral FG were also activated by the VSP-
listening condition compared to the VNPS condition. It has been
reported that the bilateral FG are involved in the processing
of “face-like” features of visual objects (Rangarajan et al., 2014)
and neurons in the left FG are involved in word recognition
(Thesen et al., 2012). The activation of bilateral FG under the
VSP-listening condition suggest an involvement of the FG in
the early-stage processing of dynamic face signals during speech
lipreading.

VSP-Enhanced Activation of the ITG Is
Lower in People with Schizophrenia
It has been reported that relative to healthy people, people
with schizophrenia show less activation in the left pITG while
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performing the silent lip-reading task (Surguladze et al., 2001).
In this study, compared to that in healthy participants, activation
of the left pITG induced by VSP was significantly reduced in
people with schizophrenia, suggesting a schizophrenia-related
functional damage to the left pITG. Clearly, the impaired
functions of the left pITG, such as those of general encoding
of visual symbolic gestures, visual working memory, multi-
modal semantic processing, and visual selective attention, are all
important issues in the investigation of schizophrenia.

In this study, in addition to those in the left pITG, reduced
BOLD signals were also found in the bilateral TriIFG, left
postcentral, left STS, left caudate, left fusiform, right precentral,
and right thalamus. The results suggest that under speech
masking conditions with visual priming, the impaired target-
speech perception in people with schizophrenia may be related
to lower activation in these brain areas that are involved in
processing masked speech (Scott and McGettigan, 2013), speech
production (Scott and McGettigan, 2013; Ding et al., 2016),
semantic processing (Huth et al., 2016), or general face-feature
processing (Rangarajan et al., 2014).

Functional Connectivity of the Left pITG
Induced by VSP in Healthy People
Psychophysiological interaction analyses conducted in this
study showed that in healthy participants, the VSP-induced
enhancement of functional connectivity occurred from the left
pITG to a variety of brain structures, including the temporal areas
(bilateral STG), frontal areas (bilateral mSFG, righ MFG, and
right IFG), sensor-motor cortices (SMA and supramarginal area),
and insular.

The STG is an early stage in the cortical network for
speech identification and perception (Hickok and Poeppel, 2004;
Ahveninen et al., 2006; Scott and McGettigan, 2013). Both brain-
imaging studies (Friederici et al., 2003; Ahveninen et al., 2006)
and functional-lesion studies (Boatman, 2004) have shown that
the STG is involved in speech perception at the phonetic, lexical-
semantic, and syntactic levels. Unmasking-correlated functional
connectivity between the left pITG and the left STG observed in
this study suggests that the unmasking effect of VSPmay be based
on the integration between the visual-speech processing and the
auditory-speech processing.

The right IFG is involved in both detection of speech stimuli
(Vouloumanos et al., 2001) and speech-production process
such as lexical decision (Carreiras et al., 2007) and production
of lexical tones (Liu et al., 2006). The enhanced functional
connectivity of the ITG with the right IFG suggests an enhanced
involvement of both the speech-detection system and the speech-
production system to deal with “cocktail-party” speech-listening
situations.

The mSFG is involved in both controlling goal-directed
behavior through the stable maintenance of task sets (Dosenbach
et al., 2007) and selecting action sets (Rushworth et al., 2004).
Previous studies have also suggested that the SMA may play a
role in planning, preparing, controlling, and executing complex
movements (Nachev et al., 2008; Price, 2012). The MFG is
involved in suppressing irrelevant distracters to ensure accurate

target selection in the competition between target and distracters
(Lesh et al., 2011; Sokol-Hessner et al., 2012; Jeurissen et al., 2014;
Zheng et al., 2016). The insular cortex is implicated in response
inhibition (Menon et al., 2001).

Thus, introducing the VSP listening condition may not only
induce a mechanism specifically underlying the unmasking
effect of VSP, but also generally enhance cooperation of
brain areas related to attentional selection of target lipreading
signals, suppression of masking signals, visual-auditory speech
integration, and facilitation of the functional integration between
the earlier-stage visual processing system and the motor
executing system.

Altered Functional Connectivity of the Left
pITG in People with Schizophrenia
In this study, compared to healthy participants, participants with
schizophrenia showed reduced functional connectivity of the left
pITG with the bilateral rolandic operculum, bilateral STG, and
the left insular.

It is known that the left rolandic operculum (which is caudally
adjacent to Broca’s area) is involved in both sentence-level
speech prosody processing (Ischebeck et al., 2008) and syntactic
encoding during speech production (Indefrey et al., 2001). The
reduced functional connectivity of the left pTIG with the left
rolandic operculummay be related to the schizophrenia-induced
impairment of the unmasking effect of VSP.

In addition, reduced functional connectivity of left pITG with
the bilateral STG (for the contrast of VSP vs. VNSP)may imply an
abnormal integration between the processing of VSP signals and
that of auditory speech signals. Moreover, the reduced functional
connectivity of the left pITG with the insular may be related to a
schizophrenia-induced reduction of inhibition of masker signals
or schizophrenia-induced abnormality of emotional processes
(also see Menon et al., 2001).

CONCLUSIONS

(1) The unmasking effect of VSP on speech recognition
against speech masking may be normally associated with
both enhanced activation of the left pITG and facilitated
integration of the functional network centered at the left
pITG.

(2) The facilitated integration of the functional network
centered at the left pITG may improve both the processing
of target-speech signals and the suppression of masker
signals.

(3) Both VSP-induced activation of the left pITG and functional
connectivity of the left pITG with the brain regions related
to either speech processing (e.g., bilateral temporal cortex
and rolandic Operculum) or inhibition of irrelevant signals
(insular) markedly decline in people with schizophrenia,
who exhibit impairment in the unmasking effect of VSP on
speech recognition.

(4) The impairment of the unmasking effect of VSP in people
with schizophrenia may be associated with the functional
deficits of the brain network centered at the left pITG.
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(5) Future studies will add other multisensory integration tasks
to the protocol described in this study to explore the
brain network whose functional deficits are more specific to
schizophrenia.
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